
GraphQL,
PWA 
and the world of Software 
Architectures – from 
a front-end point of view

  Jamie Maria Schouren

IN THIS ARTICLE 
YOU’LL FIND OUT: 
•	 What benefits GraphQL 

brings to the table
•	 Differences between 

REST and GraphQL
•	 What Service Oriented 

Architecture is

22



If you ask a random developer what she or he knows about 
web development, you will probably hear the word REST 
in the answer. In a time where API driven architectures are 
quickly becoming the standard for fast growing e-commerce 
companies, RESTful web services are taking a dominant 
position in this climate.

While REST is still the standard for most companies; in early 
2018, something new appeared on the horizon. Something 
that would forever change the way we develop APIs. A 
framework developed by Facebook, a query language for 
APIs and a runtime for fulfilling those queries with your 
existing data: GraphQL.

GraphQL was developed for internal use by Facebook in 2012 
and was publicly released in 2015. In early 2018, however, 
many big companies started to introduce GraphQL in their 
stack – and boy, did it deliver.

REST VS GRAPHQL
Any developer looking to connect a system or service with 
APIs, in most cases blindly chooses RESTful to connect web 
services. This is a very logical choice, as the basic principles 
of REST allow both front-end and back-end developers to 
build web applications in a fast and intuitive way.

RESTful webservices, however, have one major disadvantage: 
the API is deciding exactly which data, in which combination 
and in which format, the front-end application can retrieve. 
The front-end developer in this case is heavily depending 
on the structure of the API, a responsibility of the back-end 
developer.

Running just one front-end application won’t get you into 
much trouble, as long as the front-end developer and the 
back-end developer work closely together and document 
how the API needs to be used. But as soon as your API needs 
to serve data to more front-end applications or even other 
back-end services, you will run into problems very quickly.

Every front-end application or service has its own need for 
certain data – which might even change frequently – some-
thing the API developer needs to take into consideration 
when developing and maintaining the API. In practice, this 
means that each application calling the API will need to make 
multiple calls to get the data it needs. Within the process, a 
lot of data will be retrieved that a specific application does 
not even need, causing performance issues very easily.

I have seen the future, 
and it looks a lot like 
GraphQL. Mark my 
words: in 5 years, 
newly minted 
full-stack app 
developers won’t be 
debating RESTfulness 
anymore, because 
REST API design 
will be obsolete.

Alan Johnson 
Is GraphQL The Future?, May 2018

23

 W
o

m
e

n
 in

 t
e

ch
 



To prevent performance issues by retrieving data we 
don’t need, a back-end developer can build API end-
points which exactly match the data requirements of 
each (front-end) application. However, this will cause 
very tight coupling between the API and the front-end 
applications: making it more difficult to build, manage 
or maintain, and at the same time turning it into an 
unnecessarily complex system.

As you can imagine, Facebook ran into these issues 
in 2011 when they decided to refactor their whole 
application landscape into an API driven architecture. 
With their websites, a bunch of apps serving nearly all 
mobile platforms, and God knows what other services 
they are sending their (your?) data to, they reached 
the limitations of RESTful web services within no time.

Facebook then decided to build a new framework. 
A framework that would make the exchange of data 
between APIs and front-end applications easier, more 
efficient and more flexible. One with all the advantages 
of RESTful web services, but without its weaknesses: 
and that is how GraphQL was born.

BUT WAIT, WHAT 
IS GRAPHQL?
In short: GraphQL is a query language and a runtime 
environment (an external service such as Apollo) which 
allows you, similar to REST, to connect an application 
with any another application out there.

GraphQL gets you exactly the data you need, from 
just one single API, in real time. No more overload of 
data you don’t need, no more back-end developers 
getting frustrated to build complex services for each 
application, no more front-end developers waiting 
for the back-end developer to deliver before they can 
continue, no more depreciation of performance, and if 
that wasn’t enough: GraphQL will automatically write 
documentation for you.

With GraphQL, a user, for example a front-end appli-
cation, can send request to a back-end application. 
The request is a query specifically explaining what it 
needs from the API. The runtime of GraphQL, which 
is running in the back-end application, then translates 
these queries into functions that can retrieve and 
even modify data.

One major difference between RESTful webservices 
and GraphQL is that RESTful webservices provide more 
than one endpoint to retrieve or modify data, while 
GraphQL only needs one. This allows you to, with just 
one call, get the exact data you need: nothing more 
and nothing less. Not only will it get you the data you 
need, but it will exactly give you the data in the same 
structure as you put in the request. This way you, as 
a front-end developer, will know exactly what you get 
and how you get it – making the use of GraphQL a 
whole lot easier, more efficient and way more flexible 
than when using RESTful webservices.

GraphQL is really a 
game changer. Front-
end developers can now 
build their front-ends, 
add their queries and 
will know exactly how the 
data will return – even 
if the API is not ready 
yet. They can truly work 
simultaneously with, and 
independent from, the 
back-end developer as 
they don’t need to care 
about where the data is 
coming from, and they can 
develop with just mock-up 
data. As long as the right 
data will come in the end.

24



Proudly made by Strix
www.strix.net

Want 
more?
Get your free copy of 
Magazine & enjoy reading!

Download Magezine

https://magezine.co/

